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SUMMARY 
The PROSPER General Circulation Model (PGCM) is a three-dimensional model based on the incom- 
pressible Navier-Stokes equations, an equation of state and the heat equation. The hydrostatic approxima- 
tion and the rigid lid approximation are used. The system of equations is converted into an equivalent form in 
which the surface pressure is more directly expressed in terms of a two-dimensional Poisson equation. The 
finite difference method is described and analysed. In particular, the iteration method within every time step 
to determine the new surface pressure and velocity components, and numerical diffusion aspects due to the 
use of the staggered Arakawa-C grid are looked at. Since part of the development of the PGCM code is a 
result of studying the Sandia Ocean Modelling System (SOMS), a comparison is made with respect to the 
concepts used in both models. 

KEY WORDS Incompressible flow Hydrostatic approximation Pressure Poisson Equation Staggered grid 
Numerical diffusion 

1. INTRODUCTION 

The starting point for the PROSPER General Circulation Model (PGCM) discussed here is the 
Sandia Ocean Modelling System (SOMS) developed by Dietrich et al.l The performance of 
SOMS and a comparison with other models-in particular the Bryan-Semptner mode12v3-in 
determining the large-scale circulation in the North Atlantic has been described by the same 
authors.' An application to determine the general circulation in Lake Neuchltel (Switzerland) has 
been described by Zuur and Dietr i~h.~ SOMS consists of two coupled models: the free-stream 
model and a bottom boundary layer model to describe the turbulent processes in the boundary 
layer. In this paper, references made to SOMS relate only to the free-stream part. 

A specific and important aspect of SOMS is the predictor-corrector method within a time step 
to determine the new velocity components and surface pressure. In the case of Neumann boundary 
conditions at the surface and bottom of the domain the method used in PGCM is equivalent to the 
one used in SOMS. In the case of Dirichlet conditions, however, in PGCM an extended form of the 
predictor-corrector method is used. Vertical diffusion is, as in SOMS, treated implicitly. In 
contrast with SOMS, in PGCM the Coriolis term is taken explicitly in the numerical scheme. 
Although explicit treatment of this term implies an a priori limitation by the Coriolis parameter for 
the time step, for lake circulations and mesoscale processes in the ocean the time step is not so 
much limited by this parameter but by internal wave propagation and advection and horizontal 
diffusion terms. Therefore this disadvantage in comparison with SOMS is not relevant for these 
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processes. The advantages of explicit treatment of the Coriolis term will become apparent in what 
follows. 

In this paper a description of the PGCM numerical algorithm is presented. The iteration 
method within a time step to determine the new velocity components and surface pressure is 
discussed in detail. Criteria for stability are derived. An analysis of numerical diffusion aspects in 
both the SOMS and the PGCM code is performed. 

2. THE CONTINUUM EQUATIONS 

2.1 The basic equations 

The circulation model is based on the Navier-Stokes equations written in primitive variables. 
Scaling estimates of the terms that appear in these equations justify the following approximations 
to simplify the resulting ~ y s t e m . ~ . ~  

(i) The Bousinesq approximation: density variations are neglected in the horizontal 
momentum and mass conservation equations but are included when they are associated 
with buoyancy forces (in the vertical momentum equation). Density is assumed independ- 
ent of pressure and varies only with temperature. 

(ii) The hydrostatic approximation: all terms in the vertical momentum equation are neglected 
except the buoyancy and pressure gradient terms. 

(iii) The rigid lid approximation. 
(iv) Turbulence is represented by means of horizontal and vertical turbulent viscosity coeffi- 

The turbulent viscosity coefficients are taken as constant. p is the normalized density (i.e. density 
divided by reference density). The kinematic pressure (i.e. pressure divided by reference density) is 
denoted by a capital P in order to distinguish it from the kinematic surface pressure p that will 
appear later on. The resulting continuum equations are stated below: 

cients. 

the horizontal momentum equations 
u, +v * (uv)-fu = - P ,  +A,V:U + AvUzz, 

u, + v .(uv) + j u  = -Py  + A& u +Av uzz; 

the hydrostatic approximation equation 

P , = p g ;  

u, + uy + w, = 0; 
the mass conservation equation 

the equation of state 

p =  1 -p( 7'- To); 

the heat equation 
T, + V * ( Tv) = KHV; T +  KV T,,. 

The above equations apply to a bounded domain R foc t>O,  subjected to Dirichlet or Neumann 
boundary conditions at aCb for the horizontal velocity components and temperature. Owing to the 
hydrostatic approximation, second-order spatial derivatives of the vertical velocity component w 
have disappeared. A consistent boundary condition for w is wn3=0, in which n3 is the third 
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component of the unit-outward pointing normal n = (n l ,  n,, n3) at the boundary an. The initial 
conditions are 

v(x, 0) = vo(x) in = u 80 ,  
with 

v . v , = o  in R, 
T ( x ,  O ) =  To(x) in a. 

The following symbols are used 

spatial co-ordinates in a left-handed Cartesian system (z-axis points down- 
wards) [L] 
time [TI 
temperature [O] 
velocity components (v=u,  v,  w) [L T-'1 
kinematic pressure [L2 T 2 ]  
normalized density 
effective gravitational acceleration [L T-2] 
turbulent viscosity and diffusion coefficients [L2 T - l ]  
Coriolis parameter [T-'1 
coefficient of thermal expansion [ O -  '1 
=(a/ax, spy, a/az) 
= a * / w  + a2pyZ. 

2.2 The equivalent formulation 

Like the SOMS model, the PGCM model uses an equivalent form of the above set of equations 
based on the equivalence assertion for incompressibleflows as described by Gresho and Sani.7 This 
assertion, although not formally proved by the authors, has been verified thoroughly in practice, 
among others by Abdallah and Dreyer.' We will assume its correctness. The assertion is used to 
convert the original set of equations into one in which the pressure is more directly expressed in 
terms of the so-called pressure Poisson equation, which is derived from the mass conservation and 
momentum equations, and which will replace (together with an appropriate boundary condition) 
the mass conservation equation, giving the equivalent formulation of the problem. The assertion 
in its original form was stated with respect to the full incompressible Navier-Stokes equations. We 
apply the same ideas to the case in which the hydrostatic approximation is used. 

Let us derive the equivalent formulation in the hydrostatic case. From the hydrostatic equation 
and the equation of state it follows that 

P=p(x ,y , t )+gz -gP  T(x,y,C,t)dC, I: 
in which p is the surface pressure (which is different from the atmospheric pressure owing to the 
rigid lid approximation). Define the terms R and S, which are treated explicitly in the integration 
scheme: 

R = g P [ ;  T,d[ - v (UV)  +fV + AHV:u, 

S = g p  s' T,dC-V (VV) -fu + A,V;v. 
0 
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With the above definitions the momentum equations take the form 

u, = -px + Avu,, + R, 

v, = - p y  + Avu,, + s. 
Owing to the rigid lid approximation, the vertical velocity is zero at the surface. The mass 
conservation equation yields 

w = s’ (u, + v,)dC. 
0 

The boundary condition wn3 =O at the bottom gives 

in which h = h(x, y) is the bottom depth. By taking the horizontal divergence of both sides of the 
momentum equations and integrating the result from surface to bottom (from (2) and the initial 
condition V.vo=O it follows that the remaining left-hand side is zero), we obtain a two- 
dimensional Poisson equation for the surface pressure: 

V z p = k  Jl(  ~ ( A , u , , + R ) + - ( A , u , , + S )  a a 
aY 

The correct boundary condition in the equivalent formulation for the pressure Poisson equation is 
a Neumann condition that is derived simply by applying the normal component of the momentum 
equations at the surface boundary an,: 

in which ns=(nl ,  n,) is the unit outward-pointing normal at the boundary of the surface G. 
Instead of the original problem, we consider from now on the equivalent problem in which the 

mass conservation equation is replaced by the pressure Poisson equation and the above boundary 
condition. The vertical velocity component w appearing in the terms R and S is by definition given 
by (1) in this new formulation and is therefore no longer considered as being an unknown. 

Besson and Laydi’ show that the solution of the original problem exists in some Sobolev space. 
However, additional regularity requirements are implied by the ‘equivalent’ formulation. 
Throughout this paper we will assume u, u, p and T to be in C2@) for t 20, in which C’@) is the set of 

functions having all spatial derivatives of order < 2 continuous in R, with continuous extensions to n. 

3. THE NUMERICAL ARGORITHM 

3.1. The time integration scheme 

The time integration procedure is such that three time levels are involved in every time step: the 
time level n + 1 for which the velocity, pressure and temperature have to be calculated, and the two 
time levels n and n - 1 for which the corresponding physical quantities are known from previous 
iterations. The choice of which terms are considered at each of the time levels n + 1, n and n-  1 will 
be justified in the next section, in which the spatial discretization and the stability of the scheme are 
discussed. 
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Using a centred difference discretization for the time derivative operator, the time integration 
problem for the momentum equations, the surface pressure Poisson equation and the heat 
equation reads as follows. Given u"-', f-', p"-', T'-', u", v", p" and T", find u"+', u"+', pn+' and 
T+' such that 

with 

R"=gP 1; T:dl: - V ( u V )  +fun + AHV;un-l, 

s" = gB TdC - v (U"Vn) -jU" + AHV; U"- 1: 
The boundary conditions for u"+' and Y"+' at the surface and bottom of the domain are either 
Dirichlet, Neumann or a mixture of both. Although the iteration procedure to solve the above 
system is valid for all sorts of linear combinations of these boundary conditions, to fix ideas, let us 
put a Neumann condition at the surface, expressing wind stress, and a Dirichlet condition at the 
bottom, expressing no slip: 

--z at z=O, =o and -- 
a u n + l  a u n + l  

aZ aZ 
u n + l -  - u  n+l- -0 atz=h.  

The boundary condition for the surface pressure is 

with 

u n f l ,  unfl and p " + l  are determined using an iterative procedure. After these quantities are 
known, the temperature is updated with the discretized heat equation in a straightforward manner 
and the time step is completed. Define the following quantities: 

ct2 =(2AtAV)-' ,  r + l = 2 A t p " + ' ,  

i n  + 1 - - un + 1 +2Atp:+', p + l  -p+l - +2Atp;+',  

IT"=un-'+2AtR, S" = U" - + 2AtS". 

Let m denote the iteration parameter of the procedure. By using the identity 

c" (u:-'+v:-')dz=O 
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and by replacing the original quantities by the overbar quantities in the time integration scheme, 
we obtain the following iteration procedure: 

p+ l , m +  1 - a - 2  -n+ l , m +  1 = R" 
f i n + l , m + l - a - 2  - n + l , m + l  = I I  

zz Y 

I) zz Y 

with boundary conditions 
a f i n + l , m + l  a i j n + l , m + l  

=o and = 7  at z=O, aZ az 

p+ l . m +  1 = -p;+ l , m  and p +  l . m +  1 = -p;+ 1.m at z=h,  

= 2Atn; bn at an,. w+ l , m + i  

8% 
The procedure is initialized with any start value for jY+l*o (e.g. j j " + * * o  = 2Atp"). Notice that in the 
overbar system the pressure gradient terms no longer occur in the first two equations, but instead 
in the corresponding Dirichlet boundary conditions. Successive iterations are coupled only 
through these terms, i.e. through p:+l*'" and pi' l v m .  When both the surface and bottom boundary 
conditions are Neumann, there is no coupling and the system is solved in one iteration only. Then 
we get. 

u n + l -  -U - n + l , l -  2Atp:+ l, " n + 1 -  - u  - n + l , l -  26 t p  ;+ l .  

In this case the method is equivalent to the predictor-corrector method used in SOMS (apart from 
the explicit treatment of the Coriolis terms). In the case of Dirichlet conditions at the surface 
and/or bottom, in general more iterations are required to approximate ijn+l and pn+l 
properly. The condition for convergence of the procedure is derived in Section 4.1. Assuming this 
condition is satisfied, we formally have 

( C n + l ,  p + l , p n + l ) =  lim ( c n + . l , m  - n + l . m  - n + l , m  
YU YP 1. 

m- m 

All three equations in the iteration scheme are decoupled and are evaluated one after another. The 
first two equations are solved either directly or with a relaxation method. Since the unknowns 

and p + l , m + l  only have derivatives to z, the equations can evaluated at successive 
horizontal positions. The two-dimensional Poisson equation that determines p.+ is solved 
using an SOR method or by a fast marching method for elliptic problems such as developed by 
Dietrich et a1.l' and Roache." 

f i n  + l , m +  1 

3.2. The finite diferences in space 

Spatial discretization is based on the concept of control volumes.12 The control volume 
approach to deriving finite difference equations relates the time derivatives of volume-integrated 
conserved quantity densities in each control volume to corresponding fluxes integrated over the 
boundaries of the control volume. The bounded domain R is discretized into a finite number of 
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cubic control volumes. The grid is regular but stretched in the vertical co-ordinate in order to 
model accurately the surface and/or bottom boundary layer. The control volumes for the different 
physical quantities are actually staggered in space, corresponding to the Arakawa-C gridt3 (see 
Figure 1). In this grid four different types of control volumes are distinguished the P-cells for 
pressure, and the U-, V- and W-cells for the respective velocity components. Control volumes for 
any scalar quantity, such as temperature, coincide with the P-cells. The P-cells are considered to 
be either wholly inside or wholly outside $2. 

Let us derive the finite difference formulation for the heat equation to illustrate the above 
approach. Rewrite the heat equation in the form 

Tt + V F = 0, 
in which 

F=(u T-KHT,., vT-KHT,,, w T -  K, T,) 

is the flux density vector. Now consider the flux through the right side of the P-cell i, j, k. The finite 
difference formulation of the flux through this side per unit time per unit area is given by 

Discretization of the fluxes through the other sides of the control volume is analogous, except for 
the implicit treatment of the vertical diffusion term in the third component of the flux density 
vector. The change in temperature is now calculated from the sum of the fluxes over the sides of the 
volume element, giving the finite difference analogue of the heat equation 

in which the y-component has been suppressed and the advection velocity is tak-n constant in 
order to keep the expression conveniently arranged. It is observed that the finite difference 
formulation for the heat equation is basically a combination of the leapfrog method for the 
advection terms, the forward-differencing method for the horizontal diffusion terms and implicit 
treatment of the vertical diffusion terms. 

L - - - - - -  1,. ; p "iJA+lR 

w..  uc 

Figure 1. Arakawa-C pressure control volume. ui, j , r ,  ui, j ,  and wi, j,k are drawn at the centres of the U-, V- and W-control 
volumes respectively. ui, j,t+ ,,2 is drawn to illustrate the notation convention 
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The corresponding terms in the momentum equations are treated in exactly the same manner as 
in the heat equation. However, the first momentum equation is evaluated with respect to the 
U-cells and the second with respect to the V-cells. 

4. ANALYSIS OF THE ALGORITHM 

4.1. Convergence of the iteration procedure 

time step superscript we get 
Consider the iteration procedure within a time step defined in Section 3.1. By suppressing the 

p + l - u - 2  - n + l -  - 
uzz  - R ,  

- 
urn+ 1 - 2 ijyz+ 1 = s, 

(uy+'+fiY+')&, 

with boundary conditions 
sum+ 1 a p + l  
-- - 0  and -- --z atz=0,  

p + l =  - j i y  and V ' " + l = - j i Y  at z = h ,  

aZ aZ 

-- ap"+1-2*t4-~n at a q .  
an, 

Let Po be any given start value. Although tio and iTo are not defined by the procedure, we introduce 
them artificially and set tio = ijo = 0. First ti', V' and jj' are determined from the above equations. 
Define 

#"=$'"''C"-', e m = f i r n - ~ - l  and qn=pm-pm-l for m=1,2,. . . . 

Notice that d' =U1, e1 = 6' and q1 =pl -Po. Form = 1,2,. . . we obtain the following system for the 
differences: 

1 - (x -2 drz+ 1 = 0, 

e''' + 1 - (y -2 eFz+ 1 = 0, 

with boundary conditions 

= O  and -- a c + 1  -0 at z=O, 
a#"+' 

aZ aZ 
d r n + l =  -qT and em+'= -9 ;  at z=h, 
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From the first two equations and the corresponding boundary conditions it follows that 

dm+1= cosh(az) em+ 1 = cosh(az) 
cosh (a h) ' - q y  cosh(ah)' - 43 

Taking the horizontal divergence Vh.(dm+', em+') of the above expressions and putting the result 
in the Poisson equation yields 

-1 
ah 

viqm+' =- tanh(ah) [V:4"'+ @(vhq"). (Vhh) tanh(ah)]. 

Let I * Im be the supremum norm defined on Q,. Since dq"/dn,=O at dQ, we have 

Ivhqm Im ivi4mim , 
in which C is a constant determined by the dimension of 4. Assuming that h is sufficiently regular, 
define 

tanh (ah) t a n h 2 ( a h ) v l  h m  . 

For o < 1 the method converges. Since we have put iio = iTo =0, we get 
m m 

m =  1 m =  1 
ii= 1 d", if= 1 em. 

When both the surface and bottom boundary conditions are Dirichlet, a similar condition to that 
above can be derived. We then get the condition 

cosh(ah)- 1 cosh(ah)-1 'Vhh 
2 /  ahsinh(ah) I m + C l (  sinh(ah) ) T/,<l' 

In all but extreme cases with very pronounced topography, both conditions are always fulfilled. 

4.2. Stability 

Although we do not derive a rigorous stability criterion that applies to the entire integration 
scheme, by considering the separate terms of interest, limitations for the time step are derived 
which in general are sufficient to assure stability of the method. 

In order to derive the time step limitation due to the explicit treatment of the Coriolis term, 
consider only the corresponding part in the iteration scheme 

U n t l -  t .  J -'hJ ~ - 1  + ZAtft(u7, j +  u?+ 1, j+uy, j -  +uy+ 1, j -  1), 

~ 7 . f  = U ~ , J '  -2Atf $(u:, j +  US j +  1 +u;- 1, j +  u:- 1, j +  I), 

in which the first equation is evaluated in the U-cells and the second in the V-cells. Notice that the 
velocity components in the Coriolis terms are interpolated to these cells. These interpolations are 
justified in the next subsection. Let 0 and 8 denote the spatial Fourier transforms of the velocity 
components u and u respectively. Taking the Fourier transform of the above equations yields 

fin + 1 - fin - 1 

5 n + l -  -6 n - 1 -Fan, 
- +yP, 
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with 

y = tf(1 + e-'{ + ei@ + e-'5eio), 

in which and 8 are the phase angles of the Fourier components in the x- and y-co-ordinate 
respectively and 7 is the complex conjugate of y. Define Pn'' =an and $"+' =On. With these 
definitions the above system can be written as 

O y l O  

0 1 0 0  

A necessary and sufficient condition for the above scheme to be stable is that the norm of the above 
matrix S is smaller or equal to one, i.e. 11 S 11 < 1. By determining the eigenvalues of S, it is readily 
verified that this is the case if 1~142. The corresponding limitation for A t  follows from the 
definition of y:  

At G 1/ f .  

In a similar fashion a criterion for stability is derived with respect to the advection and diffusion 
terms by taking the Fourier transform of the discretized heat equation (3). The resulting condition 
for stability is 

in which U, V and W should be interpreted as the maximum velocities that occur in a. Since the 
corresponding terms in the momentum equations are treated in exactly the same manner, the same 
type of restriction can be derived for these equations. Then, in the above expression KH is replaced 

The rigid lid boundary condition eliminates the highest-frequency surface wave components. 
by A,. 

However, high-frequency internal waves can still limit the time step. 

4.3. Numerical diffusion in SOMS and PGCM 

By considering the integration of the Coriolis terms in the momentum equations, diffusive 
aspects in SOMS and PGCM are studied as a result of interpolating physical quantities to 
different control volumes of the Arakawa-C grid. In order to study the effect of these 
interpolations, we will look at the difference between the velocities obtained by the actual 
algorithms and the velocities that would have been obtained when no interpolations of quantities 
would have been necessary to approximate them with respect to different control volumes. 

In SOMS the Coriolis terms are treated implicitly. Therefore the non-interpolated scheme reads 
as follows: 

u n + l -  n - 1  

v;,; = v:,: - 2 A t  f ~ 1 ? : / 2 ,  j +  112.  

1, j -ui, j + 2Atf v1=f/2, j -  1/21 

The above equations are coupled through the implicit terms and both equations relate to different 
types of cells, the U- and V-cells respectively. In order to solve the above system, in SOMS both 
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equations are first interpolated to the P-cells and the new velocity components are computed with 
respect to these cells. The interpolated scheme is 

, n +  i-112, 1 j = i ( u l , s l  + ~ : 1 , ' , ~ ) + 2 A t  f v  - n +  l,j- 1 112, 

ij;,:! 1 / 2 = ~ ( ~ ; , S ' + ~ ; , s ~ 1 ) - 2 A t f ~  i -  1/2,j3 
- n +  1 

in which a tilde denotes a quantity obtained with the actual algorithm. After the above system has 
been solved, the new velocity components are interpolated back to their respective cells to 
complete the procedure: 

fi;,;l =~(fi;_+,:2,j+al~,/2,j) 

1.1 - 2 ( u i . j - 1 / 2 + v i . j + 1 / ~ ) .  
fiR11-1 - n + l  -n+  1 

Consider the difference between fi i ,j  and u ~ , ~ .  With the above equalities the difference can be 
expressed as 

Let U be the maximum velocity that occurs in Q and let L be a characteristic length scale. The 
characteristic time interval of interest is T =  f - Assume Ax 2 A y. The orders of magnitude of the 
respective terms on the right-hand side are for the first term 0 [ U ( A X ) ~ / L ~ ] ,  for the second and 
third terms 0 [ UAt f (Ax)'/L2] and for the fourth and fifth terms O[ U(At f )2]. Assuming At f < 1, 
the dominant term is the first one. This term expresses pure numerical diffusion over the time 
interval At. Thus the numerical diffusion AN per time unit is 

A, = (Ax)'/4At. 

AN is considerable. In fact, it is even more than the maximum tolerable physical horizontal 
diffusion in PGCM on account of the stability analysis (4) performed in Section 4.2. Further, if A t  
gets smaller, AN gets bigger, which is disadvantageous if A t  is restricted by advection or internal 
wave terms. 

The authors of the SOMS model were aware of dispersive errors due to the implicit treatment of 
the Coriolis terms. However, they preferred their method to explicit treatment for reasons which 
relate to the coupling of the free-stream part with the bottom boundary layer part of their model.' 

In the PGCM scheme Coriolis is treated explicitly and the momentum equations are evaluated 
in their respective U- and V-cells. The non-interpolated scheme is 
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so that 

This is the order of magnitude of the difference after one time step. The order of magnitude of the 
cumulative error after a characteristic time interval T=f-' is O [  U(Ax)'/L2]. 

5. CONCLUDING REMARKS 

The equivalent formulation for the incompressible Navier-Stokes equations applied to the case in 
which the hydrostatic approximation is used is attractive for numerical treatment. The described 
PGCM numerical method for solving the equivalent system has a number of advantages. The 
iteration method within every time step, which is a generalized form of the predictor-corrector 
approach in SOMS, can be used for both Dirichlet and Neuman boundary conditions at the 
surface and bottom of the domain. It allows one to evaluate the surface pressure and the vertical 
diffusion implicitly and assures that the velocity field is solenoidal at all times. Explicit treatment 
of the Coriolis term decouples the momentum equations in the implicit terms and therefore avoids 
unwanted interpolations to different cells of the Arakawa-C grid, as in SOMS. This reduces the 
number of computational operations per time step and, above all, avoids numerical diffusion. 

The three-dimensional PROSPER general circulation model is characterized by: its exact 
conservation of mass in every time step; the speed of its algorithm, which permits a high-resolution 
grid; and lack of numerical diffusion. 
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